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Interpretation of Frequency-Dependent Susceptibility
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and 1ts frequency dependence i1s
traditionally interpreted as due to
creation of new SP particles.

Lithological variation of
susceptibility and its
frequency dependence.

All models to understand this phenomenon were originally developed for the
Bartington Instrument working at two operating frequencies.



MFK1 Multi-Function Kappabridge

Operating Frequencies:
976 Hz
3904 Hz
15616 Hz

Field Intensity Ranges:
2-700 A/mat 976 Hz
2-350A/mat 3904 Hz
2-200A/mat 15616 Hz

Mathematical models for frequency-dependent susceptibility are
re-developed for 3 frequencies of the MFK 1 Kappabridge, for

2 frequencies of the Bartington instrument and for 2 very high
frequencies (100 and 250 kHz) of a hypothetical instrument.



Ferromagnetism, Paramagnetism, Superparamagnetism
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Susceptibility and Grain Size of Magnetic Particles

multidomain (MD) magnetic particles - largest grains, medium susceptibility
stable single domain (SSD) particles - smaller grains, lowest susceptibility

superparamagnetic (SP) particles - smallest grains, highest susceptibility
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SP to SSD Transition
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—o—3904 Hz
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P \ —&— 100 kHz
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(DUIﬁsbp anfllOzdemlr 1997) (Stoner and Wohlfart, 1948)
4 sp/sd —X sd[rB/ (I ‘|‘1‘L'02 n'f eg) + 1] (Néel, 1949)

M, saturation magnetization, H, microscopic coercivity, £ permeability of free space,
V grain volume, f frequency, 7, time constant, f = KV/kT, K anisotropy constant.



Parameters for Frequency-Dependent Susceptibility
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Xep = 100 (x5 - Xue)/ Xir [Y0] (Dearing et al., 1996, GJI)
Xov = Xip — Xur [m’kg!] independent of para, MD, etc.
Xen = Xpp/ (In fiyp - Inf ¢ (Hrouda, 2011, GJI)
Xeg = Xpy/ (Infp - Inf) ) independent of frequency difference

Xir > Xup are susceptibilities at lower and higher frequencies,
Jir and f;; are respective operating frequencies.



Construction of Models 1

Only SP or SSD at both frequencies — no frequency dependence.
Transition SP to SSD > strong frequency dependence.
Natural rocks, soils - mixture of SP, SSD, MD distributed log-normally

1 log,, V — 1)’ L
f(V,,U,O_) — eXp _( glO . :u) 3
VoN2r 20 Pt
V'is grain volume, u and o are arithmetical s S
mean and standard deviation of logarithms # kY
of grain volume. A

Model Susceptibility (for more details see Hrouda, 2011, GJT)
X (W:0)= | (V. 1.0)V 2 (V)d(log,, V')

Model susceptibility 1s sum of all grains contributions of the
distribution, comprising SP, SP-SSD, and SSD susceptibilities.



Construction of Models 2
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Susceptibility distribution is very different from grain size distribution.

Many lognormal distribution curves are considered for one model with
different u and o.

In model curves, each point represents the modal value of the
distribution. Each curve was considered to span from u-30 to u+3o,
which encompasses 99.7 % of the distribution.



Results: Narrow Distribution (¢ = 0.2)
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One point represents one curve of log-normal distribution.

For frequencies < 100 kHz, the

Peaks are shifted to small grains
curves are very near one another.

with increasing frequency.

Peak height according to In (- /f, ;) Using Xpy parameter is very
Y116 ~2.77 Y4 ~ 1.39 advantageous, because 1t 1s

Xo4747~ 1.98 Ya1s ~ 1.39 almost frequency independent.
16,100 ~ 1.83 %100,250 ~ 0.92 10



Results: Wide Distribution (6 = 0.8)
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All curves tend to decrease
monotonously.

Peaks are shifted to small grains
with increasing frequency.

12

——(1,4)
——(4,16)

10 == =118 ||
—&— (100,250
8 9 *

(55 |

—- a
1 i

Xrn Parameter
»

=250 -24.5 -24.0 -23.5 -23.0
Logarithmic Mean Volume, p

For frequencies < 100 kHz, the
curves are very near one another.

Using Xgy parameter 1s again very
advantageous, because it 1s almost
frequency independent.
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Effect of Dia- and Paramagnetic Fractions

on the X, Parameter

Rock (soil) susceptibility (y,,) can be described by the Henry and Daly
(1983, Tectonophysics) model

Hw = Cda T C T Cly
where y, x,» xyare susceptibilities of dia-, para-, and ferromagnetic fractions, cy, ¢,
c, are the respective percentages.

The whole rock (soil) X .., parameter then 1s

XWFD =100 Cmix (XmiXLF_XmiXHF) / (CdXd+Cpo+CSpXSp+CmiXXmiXLF+CSSdXSSd+
Cmdxmd)

where index mix denotes grains on SP-SSD transition at both freq.

The relationship between X ., and X, (ferro) parameters 1s

Xiep = Xyrp Xwr ¥ X

where XfLF — CssdXssd * CmdXmd + C mixXmixLF* 12



Effect of Paramagnetic Fraction on X, Parameter
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The paramagnetic fractions decrease the Xy, parameter value.
Consequently, low value of X ) does not necessarily mean low
amount of SP-SSD particles.
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New Parameter XR

XR = (X1 'X4)/(X4 'X16)
where y,, x4, X, are susceptibilities at 976, 3904 and 15616 Hz, 1s
not affected by the dia- and paramagnetic fractions.
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Xrop,18 Parameter [%o]
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Dam Sediments
Investigated are sediments of the Brno Dam located on Svratka river
and soils in the vicinity of Vir Dam also located on Svratka river.

4 Brno
O o Vir

[m]

0 200 400 600 800
Mass Susceptibility at Low Frequency [10’9 m3/kg]

1000

Similar spans of X, ;s parameter

indicate similar proportions of
SP-SSD grains in sediments of
both areas.

4 Brno
o Vir

Xr Parameter
3

XFD(W 16) Parameter [%]

In Brno Dam sediments, X <I.

In Vir soils, X varies about 1
being often higher.

Different values of X parameter indicate differences in grain size

distributions of SP-SSD grains in both areas.
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Comparison of MS-2 (Bartington) and
MFK1 (Agico) Instruments

The MFK1land MS-2 instruments use different operating frequencies
for determining the X, parameters.
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Large differences exist between individual curves,

Xpp depends on instrument, some normalizing 1s needed !!!
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Suggesting Normalization

The problem can be overcome, 1f Xpy instead of X parameter is used.
In addition, MFK1 X parameter can be re-calculated to MS-2 Xig

parameter as follows
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Differences are very
small now.
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In Bartington, Xpg =Xpp.
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In Kappabrldge, XFB d]ffer Logarithmic Mean Volume, p
according to frequencies.

The Kappabridge and Bartington parameters are interrelated in only
approximate way because of different segments of distribution.




Precision in Determination of Xrp Parameter
(Hrouda and Pokorny, 2011, SGG)

The error of the entity O, which 1s not measured directly, but which 1s
a function of the other entities (O = f(x,y,z,..)), can be calculated from

S S -

Substituting X, for O and executing yields

AXpp = (IOO_XFD )\/('QZLF)Z + (‘97(HF)2

where 3y, and &y, are relative errors.
This formula calculates the expected absolute error in the X
parameter according to the relative errors of the susceptibilities at
two frequencies and the value of the X, parameter.

18



Measurement Accuracy in MFK1 Kappabridge

Accuracy of Susceptibility at 3 Frequencies

- 976 Hz
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artificial specs.,
magnetite in
plaster of Paris

repeated (10x)
measurement

calibration before
each collection
measurement

In specimens with mass susceptibility higher than 3x10-® m’kg!, the
relative error 1s better than 0.2 % at all three frequencies.
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Error Modelling 1

The X, values (5%, 10%, 15%) and relative errors 3y, . = 3y

were considered
2.0
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The resultant root-mean-square error in determining the X

parameter varies only weakly according to the X, parameter.



Error Modelling 2

The X values (5%, 10%, 15%) and relative errors 3y, . < Syyp

were considered
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Relative Error in Susceptibility dx.r, x4 = C 9x.F

If the root-mean-square error in determining the X, parameter should
be less than 1%, the relative error in determining the y, .. susceptibility
must be less than 0.005. This is relatively severe requirement.
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Experimental Accuracy Investigation

A collection of cave sediments was measured 5 times in different
days. Data of the first day were ordered increasingly, data of the
other days were ordered in the order of the first day.

15

10 =

1, [%]

Day 1
Day 2
Day 3
Day 4
Day 5

Q L L L L D D D U D D
1T 2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Sample #
Variation in the X, parameter in the order of 1% is well reproducible.
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Magnetization, M [A/m]

Magnetization [A/m]
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What 1s Out-Of-Phase Susceptibility?
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(after Jackson, 2003-4, IRM Quarterly)

— Magnetizing Field H(t)=H cos(wt)

(H  1s amplitude, w is angular frequency)

In dia, para, MD ferro materials

— In-phase response  M(t)=M cos(wt)

Susceptibility x=M/H

In SP to SSD grains, the response 1s
M(t)=M cos[w(t-At)]= M cos(wt-0)
(4t 1s time lag, o 1s phase)

Susceptibility resolves into in-phase
(x'= M’/H ) and out-of-phase (x'"")
components, related as tan o = '/ y'
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Physical Mechanisms of Out-Of-Phase Response
(Jackson, 2003-4, IRM Quarterly)

(1) viscous relaxation,
(2) electrical eddy currents
(induced by AC field in conductive materials)
(3) weak field hysteresis
(non-linear and irreversible dependence of M on H)

The mechanisms (1), (2) result in frequency dependence of both
in-phase and out-of-phase responses, the mechanism (3) yields
signal that 1s frequency independent, but amplitude dependent.

In environmental magnetism, we have to avoid rocks with
mechanisms (2) and (3).
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Out-Of-Phase Susceptibility vs. Particle Volume

%0 , General Equation for
—1—-X'976 Hz

e x| | SP-SSD transition
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Narrow Distribution
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Qut-of-Phase Susceptibility

In-Phase Susceptibility

Wide Distribution
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Effect of Para, etc., on Phase Angle
Whole Rock Susceptibilities

' — '
Xw™ Cld T Cpo T Cstsp T Csstssd+ Cindmd T CrnisX mix

4 "W — CmixX "mix
tano, = x". /X

tan 8W - Cmix)("mix/(cdxd T Cpo T Cstsp T Csstssd+ Cmdlmd T Cmix)('mix)
The frequency-independent components affect

(generally decrease) the phase angle, even though they
themselves show no phase shift !!!
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Relationship between Out-Of-Phase and
Frequency-Dependent In-Phase Susceptibilities

/2 Law D% : .
' kg parameter can be considered as macroscopic
4 __ 2 7" equivalent of dy'/0ln f, member. Then,
81nfm 7T Y Z'LF_Z'HF :_E%,,
® In /, mHF — In f, mLF T

Substituting for y”’ from tan 0 = "/ ' and
rearranging the terms yields

Xey = —@tan5 =—63.7tan o
T

X __zoo(lnmeF _lnmeF)
FD — T

tan o
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XFn(14)

XFN(14)

Examples of Correlation between y’” and Xpy

Loess/Palaeosol Sequence at Cerveny kopec hill in Brno
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Ferrofluid - ¥’ due to viscous relaxation

Ferrofluid
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Suspension of very small to
ultrafine magnetite particles in
mineral oil.

No field variation and strong
frequency dependence 1n y’.

No field variation and very weak
x’’ resulting 1n low phase angle.

x’” 1n ferrofluid 1s evidently due to
viscous relaxation.
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Shungite - ¥’ due to electrical eddy currents

Shunate Shungite 1s highly conductive
metamorphic rock from Karelia

t
1.0E-04
st | containing elementary noncrystalline
- P carbon with a metastable structure

r -1.0E-04 [ \ . 1t1 .
1 o incapable of graphitization.

1.5E-04

Phase Susceptibility

——BSus

—— Bsus F2
—— Bsus F3

-1.5E-04

-2.0E-04

0 150 2c|)o 350 4(|)o 560 etljo 750 800 Very IOW and ﬁeld 1ndepend€nt X,.

H [A/m]

| Strong y”’ resulting in phase angle
. about 90°, which is virtually field
independent.

a0 W x” 1n shungite 1s evidently due to
‘d electrical eddy currents. No inter-

—4— Phase
—&— Phase F2

S Phasets pretation in terms of ultrafine
’I(IJO 2(IJO 3(;0 4(;0 5(I)0 6(IJO 7(;0 800 particles iS pOSSible.

H [deg]

Phase Angle [deg]

[o2]
[(s]

o]
(9]
o

32



Basalt - y’" due to weak field hysteresis

Specimen CS 28-7-1
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Conclusions 1

Frequency-dependent magnetic susceptibility results from interplay
between SP and SSD or even MD magnetic particles

. Peaks in models with log-normally distributed grain volumes are
shifted towards small grains with increasing frequency.

. New parameter X, helps us to differentiate between wide and narrow
distributions. It is independent of paramagnetic fraction.

Paramagnetic fraction tends to decrease frequency dependence. Low
whole rock X does not necessarily indicate low amount of SP-SSD
particles, but can also be indicative of paramagnetic and/or MD
fraction.

. New parameter X.; helps us to compare Bartington and Kappabridge
measurements.

MFK1 Kappabridge reliably measures X values of about 1%.
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Conclusions 2

1. Out-of-phase susceptibility is a good and rapid tool for investigating
magnetic particles on SP-SSD transition provided that it 1s solely due to
the viscous phenomena. Simple test was proposed for checking validity
of this assumption in each particular case.

2. Main advantage of y”’compared to X;p 1s that it does not require
measurement at two or more frequencies.

3. Formulas were proposed for approximate conversion of y” to Xgp.
Correlations found in natural specimens seem to be acceptable from the
practical point of view.

4. Paramagnetic and MD ferromagnetic fractions tend to decrease the
phase (0).
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Concerning the frequency models, an extended explanation can also be found in
Hrouda, F., 2011. Models of frequency-dependent susceptibility of rocks and soils
revisited and broadened. Geophysical Journal International. doi: 10.1111/5.1365-
246X.2011.05227.x ,

and a more extended paper on the out-of-phase MS signals will be available soon.
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